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Abstract: We study a five-dimensional supergravity model with boundary-localized visi-

ble sector exhibiting anomaly-mediated supersymmetry breaking, in which the central re-

quirements of sequestering and radius stabilization are achieved perturbatively. This makes

it possible to understand these various mechanisms in a more integrated and transparent

fashion, mostly from the higher-dimensional viewpoint. Local supersymmetry, in the pres-

ence of visible sector quantum effects, is enforced by the formalism of the five-dimensional

superconformal tensor calculus. The construction results in only mild warping, which allows

a natural supersymmetry-breaking mediation mechanism of (finite) boundary-to-boundary

gravity loops to co-dominate with anomaly-mediation, thereby solving the latter’s tachy-

onic slepton problem. We make the non-trivial check that this can occur while dangerous

loops of stabilizing fields remain highly suppressed. Our discussion is a well-controlled

starting point for considering other generalizations of anomaly-mediation, or for string

theory realizations.
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1. Introduction

Anomaly-Mediated Supersymmetry Breaking (AMSB) is an elegant but rather subtle Su-

persymmetry (SUSY) breaking mediation mechanism operating within supergravity theo-

ries [1, 2]. It offers an attractive solution to the supersymmetric flavor and CP problems

of weak scale supersymmetry, and realistic models are possible when applied to either non-

minimal supersymmetric extensions of the Standard Model (SM) or when combined with

other SUSY breaking effects [3, 4]. Part of the subtlety is the important role played by the

quantum conformal anomaly (running couplings) within the “visible” or Standard Model

sector, when propagating in a supergravity background. Partly the subtlety involves the

precondition for the dominance of AMSB effects in the visible sector, known as sequestering.

For perturbative visible sectors, AMSB is also a perturbative effect. In principle,

sequestering can also take a perturbative form, when the visible sector and hidden sector are

localized on separated “branes” in a higher-dimensional spacetime [1]. Therefore one might

expect that realistic models of AMSB could be built where all relevant calculations could be

worked out by means of Feynman diagrams and classical solutions in a higher-dimensional

locally supersymmetric setting. In such a setting the subtleties of AMSB and sequestering

could be understood most cleanly. Perhaps surprisingly, this has proven difficult.

One forbidding aspect has been the complexity of higher-dimensional supergravity

with bulk matter and their consistent couplings to the quantum SM. As a result, the

original discussions of sequestering worked at the level of the 4D effective field theory

below the compactification scale, with key properties being deduced from matching to the

higher-dimensional theory [5, 6]. This makes the AMSB-sequestering connection somewhat

opaque, but it was possible to proceed in this manner. Even here, non-perturbative physics

has been invoked in the 4D effective theory in order to achieve extra-dimensional radius

stabilization, an issue entangled with AMSB. One would like to achieve a more microscopic,

higher-dimensional, and perturbative view of what is going on, for the sake of greater clarity,

certainty, and as the basis for further developments.

In the present paper, we study a perturbative 5D model with AMSB and sequestering

which allows one to see them operate directly from the 5D perspective, with minimal

recourse to the 4D effective theory below compactification. One can consider it as either

an effective field theory of a possible string theory compactification (with perhaps even

more extra dimensions, but where the fifth dimension is the largest), or just as a simplified

model. Given the complexity of full string theory constructions, 5D effective theories allow

one to zoom in onto just the essential features of AMSB and sequestering. We hope that

the 5D effective description we give is a useful basis for exploring, in the simplest possible

manner, new mechanisms that can function symbiotically with AMSB. The basic 5D model

is not new and was proposed in ref. [7], with somewhat different emphasis. However, our

discussion has important new elements, in particular the care we give to tracking local

supersymmmetry in the presence of the quantum conformal anomaly, and to AMSB and

sequestering. We give a more explicit, complete and fully nonlinear treatment at 5D level.

Let us review the central issues of AMSB and sequestering in order to understand the

path we will follow in the paper. We begin with a simple and familiar non-supersymmetric
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warm-up, namely pure non-abelian Yang-Mills theory in flat 4D spacetime,

L = − 1

4g2
(F a

µν)2. (1.1)

Classically, this theory is exactly conformally invariant, but this symmetry is broken quan-

tum mechanically by the running of the coupling. Now let us couple this theory to 4D

gravity classically,

L =
√−g

{

− 1

4g2
gµνgαβF a

µαF
a
νβ

}

. (1.2)

The action now enjoys general coordinate invariance, which contains conformal invari-

ance as a subgroup in the following sense. Under a general coordinate transformation the

Minkowski metric transforms as

ds2 = ηµνdx
µdxν → g′µν(x′)dx

′µdx
′ν , (1.3)

in the usual way. But for a subgroup of such coordinate transformations, the transformed

metric takes the form

g′µν(x′) = f2(x′)ηµν . (1.4)

This subgroup of coordinate transformations defines the conformal transformations, which

therefore must be a symmetry of the action when coupled to the metric.

At the quantum level, the question is how conformal invariance can be both exact,

being a subgroup of coordinate invariance, and also anomalous as is familiar in non-abelian

Yang-Mills theory. The answer is that the scalar (off-shell) mode of the metric,

gµν(x) ≡ C2(x)ηµν + the rest, (1.5)

transforms under conformal transformations, C → f(x)C, and must couple precisely so

as to compensate for any conformal breaking in the non-gravitational dynamics. Let us

focus on just this mode. It is straightforward to see that classically C-dependence cancels

out of the gravitationally coupled Yang-Mills action. But at the quantum level this is

not so. For example in dimensional regularization, in 4 + ǫ dimensions, C clearly no

longer cancels out, and multiplies the renormalization scale µ-dependence introduced to

balance dimensions. After renormalization, exact coordinate conformal invariance implies

the Yang-Mills dynamics in the C(x) background takes the form

L = − 1

4g2(µC(x))
(F a

µν)2. (1.6)

In this way, the breaking of conformal invariance in Yang-Mills theory due to µ-dependence

is dressed up by the couplings to C so as to appears as a spontaneous breaking in Minkowski

space,

〈C〉 = 1. (1.7)

Deviations of C about this Vacuum Expectation Value (VEV), C(x) ≡ 1 + δC(x),

correspond to real spacetime curvature. For small and slowly varying δC(x), the coupling

to the Yang-Mills sector is given by Taylor expanding the running gauge coupling,

L =

[

− 1

4g2(µ)
+
β(g(µ))

2g3(µ)
δC

]

(F a
µν)2. (1.8)
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This is the bosonic equivalent of anomaly-mediation. See ref. [8, 9] for other discussions of

AMSB and analogous phenomena.

When we pass to supergravity, the scalar mode C must be promoted to an off-shell

chiral multiplet which compensates for superconformal breaking, explicit or anomalous,

of the matter sector. It is the only supergravity mode that can get a non-zero VEV in

Minkowski spacetime (i.e. Poincaré invariant VEV),

〈C〉 = 1 + FC θ
2. (1.9)

It is convenient (but not essential) that there is a supergravity formalism, the Supercon-

formal Tensor Calculus [10 – 13], that effectively gives special status to the compensator C

mode, and to the exact superconformal invariance of its couplings. If we are only interested

in the propagation of a renormalizable matter sector (generalizing our Yang-Mills example)

in such a Poincaré-invariant supergravity background, then we can write the couplings to

C using flat superspace notation. Local supersymmetry demands that the couplings are

exactly superconformally invariant,

L =

∫

d4θ Z(µ
√
CC∗)Q∗eVQ+

∫

d2θW (Q,C) +

∫

d2θ τ1−loop(Cµ)W2
α + h.c.. (1.10)

Here, the superpotential is exactly cubic in fields to maintain classical conformal invariance

and we are working in the field normalization such that the superpotential is not renor-

malized and the gauge coupling τ1−loop ≡ 1/g2 is renormalized at only one loop. In this

language all the remaining running is incorporated into the wavefunction renormalization.

(This allows us to use holomorphicity to constrain the appearance of C in τ .) The standard

results of AMSB result by expanding this equation in superspace, taking into account FC θ
2

(Each of the original refs. [1, 2] contain some but not all of these results. For example, the

full combined list is reviewed in ref. [4]). To the extent that the µ dependence is dominated

by gauge dynamics, the soft terms induced are flavor-blind.

However, in supergravity supersymmetry breaking FC 6= 0 can only occur in Minkowski

space if accompanied by supersymmetry breaking from the matter sector, say a hidden sec-

tor. Then cancellation of the effective cosmological constant typically relates these two by

FC ∼ Fhid/MP l. (1.11)

Then there can be additional sources of SUSY breaking felt by the visible sector Q,V via

even Planck-suppressed couplings between the visible and hidden sectors, such as

∼
∫

d4θ
Σ∗Σ

M2
P l

Q∗eVQ , (1.12)

where Σ denotes some hidden chiral fields. While the AMSB-induced visible soft terms

are SM-loop suppressed, since they typically depend on the conformal anomaly, the soft

terms directly from the hidden sector are not, and furthermore they may be highly flavor-

violating. If such terms are present, AMSB is subdominant and does not provide a solution

to the supersymmetric flavor problem.
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A mechanism to further suppress even the Planck-suppressed hidden-visible couplings

is known as ”sequestering”. We follow the original proposal of having the hidden and visible

sectors localized on different 4D boundaries in a 5D supergravity theory, so that no direct

couplings are allowed by locality [1]. One must also check that hidden-visible couplings are

then not induced by integrating out massive bulk modes. The study of these sequestering

issues and AMSB directly in the higher-dimensional context is facilitated by the develop-

ment in recent years of a 5D Superconformal Tensor Calculus for 5D supergravity [14, 15]

(with important developments earlier in [16, 17] as well) and matter [14, 15, 18 – 20] and

their couplings to 4D boundary fields [21, 19, 22]. This formalism incorporates 5D super-

conformal bulk compensators whose boundary restrictions then play the role of the 4D

compensator reviewed above. This is more transparent than earlier AMSB work [5, 6] in

which the compensator is introduced only after arriving at the 4D effective field theory

below compactification.

The issue of radius stabilization is intertwined with AMSB and sequestering. For

example in the no-scale model which emerges from a 5D set-up without stabilization, the

effective 4D compensator has FC = 0, with vanishing AMSB [5]. In other examples,

failure to stabilize results in runaway radius moduli after hidden sector SUSY breaking [5].

However, the requisite stabilizing fields in the bulk also raise this question: given that

these fields are needed to get AMSB in the visible sector boundary from SUSY breaking on

the hidden sector boundary, how is it that they do not mediate any unsequestered SUSY

breaking effects as well? Of course, any answer should involve the constraints of local

supersymmetry, but the understanding has been necessarily indirect in earlier studies of

AMSB from higher dimensions because stabilization was accomplished by non-perturbative

gaugino condensation, which can only be captured within the 4D effective field theory, while

matching to this theory from 5D must be performed perturbatively [5]. In the present paper

we adopt a transparent classical mechanism of radius stabililzation, by means of massive

bulk hypermultiplet fields with boundary superpotentials, as proposed earlier in ref. [7]

(see refs. [23, 24] for related work, but in absence of supergravity). The stabilization is

essentially a supersymmetric generalization of the Goldberger-Wise mechanism [25].

A final consideration in AMSB is that when applied to the minimal visible sector,

the Minimal Supersymmetric Standard Model (MSSM), it results in unacceptable tachy-

onic slepton masses. When the compactification scale is not too much smaller than the

Planck scale, there is an attractive flavor-blind and UV-finite gravity loop effect that can

generate non-tachyonic visible scalar masses that compete with AMSB, and therefore can

result in a viable spectrum [26].1 However, this is only true of mildly warped compactifi-

cations. In highly warped compactifications the gravity loop effects are far subdominant

to AMSB. We will therefore study the mildly warped case here. The highly warped case is

interesting because it is AdS/CFT dual [27] to the purely 4D mechanism of “conformal se-

questering”, which avoids the complications of higher-dimension supergravity, but requires

non-perturbatively strong couplings in the hidden sector [28, 29]. The highly warped case

is also interesting because a fully sequestered example of this type has been established

1This still does not solve the µ problem of the MSSM though.
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within string theory [30]. We hope that our study of a mildly warped 5D model will help in

finding mildly warped string theory constructions in which flavor-blind gravity loops work

in conjunction with AMSB.

The paper is organized as follows. Section 2 contains a lightning introduction to the

multiplets and component fields of 5D superconformal tensor calculus, including hyper-

muliplet matter. Section 3 reviews the orbifold compactification of the fifth dimension to

an interval, the consequent breaking of higher-dimensional local supersymmetry down to

4D N=1 supersymmetry at the two boundaries as well as in the low energy 4D effective

theory. Section 4 massages the bulk contribution to the effective tree-level potential for

4D Poincaré-invariant VEVs into a useful form. Section 5 discusses the possible couplings

of bulk supergravity (including the compensators) and bulk matter to the boundaries.

New couplings are reported, and care is given to the consistent couplings of the compen-

sators in light of the conformal anomaly of the visible sector dynamics. This is the key

to understanding AMSB in this 5D context. Section 6 discusses supersymmetric radius

stabilization. Section 7 discusses the corrections to bulk fields arising from hidden sector

SUSY breaking and the cancellation of the 4D effective cosmological constant. It also ex-

plicitly connects the stabilizing fields to visible AMSB. Section 8 studies the form of SUSY

breaking transmitted from the hidden boundary to the visible sector, thereby establishing

sequestering with negligible corrections. Section 9 discusses radiative corrections to visible

SUSY breaking due to loops of bulk fields. Gravity loops are known to provide an attrac-

tive solution to the AMSB tachyonic slepton problem of the MSSM (for hiddens sectors

with large D-term SUSY breaking), but we also estimate the dangerous non-flavor-blind

effects of loops of stabilizing fields. In section 10, we give sample numerical estimates to

show that successful AMSB is achievable, in particular with a gravity-loop resolution of the

tachyonic slepton problem and adequate suppression of dangerous stabilizing-field loops.

The appendices contain some useful notation and formulae.

Throughout the remainder of the paper, unless otherwise specified, we will use 5D

Planck units, M5 ≡ 1.

2. 5D bulk superfields

Rigid 5D superconformal symmetry consists of translational symmetry PA, Lorentz sym-

metry MAB, ordinary supersymmetry Q, special conformal symmetry KA, special super-

symmetry S, and dilatation D and internal SU(2) U symmetry. In the Superconformal

Tensor Calculus approach to 5D supergravity [15, 14, 18], these symmetries are gauged

and corresponding gauge fields are2

eAM , ω
AB

M , ψM , f
A
M , φM , bM , ~VM (2.1)

where ω AB
M , fA

M , φM become dependent fields in terms of the other independent fields by

application of constraints. eAM is the fünfbein and ψM is the gravitino. In off-shell for-

2Throughout this paper, we will use A,B, . . . = 0̇, 1̇, 2̇, 3̇, 5̇ for the flat 5D spacetime indices and

M, N, . . . = 0, 1, 2, 3, 5 for the curved 5D indices. Similarly we will use a, b, . . . = 0̇, . . . , 3̇ for the flat

4D spacetime indices and µ, ν, . . . = 0, . . . , 3 for the curved 5D indices.
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malism the independent gauge fields along with auxiliary fields, vAB, χi, C , form 5D Weyl

multiplet given by
(

eAM , ψ
i
M , V ij

M , bM , v
AB , χi, C

)

. (2.2)

The system contains three more supermultiplets: two types of 5D hypermultiplets in a

compact notation,

(Aα
i , ζ

α, Fα
i ), (2.3)

where, α = 1, 2 correspond to the unphysical compensator while α = 3, 4 denote the

physical hypermultiplet, and a 5D central charge vector multiplet,

(M,AM ,Ωi, Y ij). (2.4)

The “graviphoton” AM appears within a seperate supermultiplet from graviton field, eAM ,

but in the action it mixes with vAB which is in the Weyl multiplet.

The hypermultiplet compensator is needed in order to derive physically consistent

superconformal gravity invariant action and is used to gauge fix SU(2) U symmetry while

central charge vector multiplet fixes D and S symmetries. After these gauge fixings the

theory reduces to 5D Poincaré supergravity. The i denotes the SU(2) index while the α

denotes Usp(2, 2) index. As the above indices imply, we will treat the hypermultiplets

as the complex quantities and impose the reality constraint, i.e. Ai
α ≡ −Aα∗

i = ǫijAβ
j ραβ

for the scalars (same reality condition for Fα
i terms) and ζ̄α ≡ (ζα)†γ0 = ζαTC for the

fermions where C is the 5D charge conjugation matrix.

The SU(2) tensor, e.g. Y ij , is related to the isovector, ~Y = (Y 1, Y 2, Y 3), by the relation,

Y i
j = Y ikǫkj = i~Y · ~σi

j , (2.5)

and it satisfies hermiticity Y ij = (Yij)
∗.

The details of the supersymmetry transformations, the construction of the action and

the gauge fixing can be found in refs. [15, 14, 18].

3. Compactification on S1/Z2

3.1 Parity assignment

Regarding the orbifolding on S1/Z2, we will preserve T 3 = 1/2σ3 generater to break

SU(2)R down to U(1)R and the parity assignment can be carried out consistently by the

transformation law under the Z2, i.e. for the bosonic and fermionic fields,

A(x5) → PA(−x5),

ζ(x5) → Pi σ3γ5̇ζ(−x5),
(3.1)

where the eigenvalues P = +1,−1 correspond to the parity even, odd respectively [22].

We summarize the parity assignments of the fields. The parity even fields are given by

P=+1:(eaµ,e
5̇
5,ψµ+,ψ5−,bµ,V

1,2
5 ,V 3

µ ,v
a5̇,χ+,C;M,A5,Ω−,Y

1,2;A2α̂−1
i=1 ,A2α̂

i=2,ζ
α̂
−,F

2α̂−1
i=2 ,F 2α̂

i=1)

(3.2)

– 7 –
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while the odd fields are

P=−1 :(e5̇µ,e
a
5 ,ψµ−,ψ5+,b5,V

1,2
µ ,V 3

5 ,v
ab,χ−;Aµ,Ω+,Y

3;A2α̂−1
i=2 ,A2α̂

i=1,ζ
α̂
+,F

2α̂−1
i=1 ,F 2α̂

i=2), (3.3)

where α̂ = 1 corresponds to the compensator hypermultiplet and α̂ = 2 corresponds to

the physical hypermultiplet. The orbifolding breaks 5D supersymmetry down to 4D N=1

supersymmetry.

3.2 Induced 4D boundary SUSY multiplets

The orbifolding breaks 5D superconformal gauge symmetry down to 4D superconformal

gauge symmetry. After gauge fixing the extra superconformal symmetries this corresponds

to breaking 5D local supersymmetry to N=1 4D local supersymmetry. The 4D supercon-

formal symmetry constrains any boundary action terms and it is therefore important to

determine how bulk fields decompose under this symmetry.

The consistent parity assignment uniquely determines the following 4D superconformal

Weyl (or gravity) multiplets3 at the boundary (i.e. it satisfies local SUSY transformation

law of 4D superconformal gravity) [22],

(eaµ, ψµ+, bµ, aµ, ω
ab

µ , φ̂µ, f̂
a
µ), (3.4)

where

aµ =
4

3
(V 3

µ + vµ5̇) ,

φ̂µ = φµ − Γ5γ
ava5̇ψµ+ +

1

2
iΓ5R̂µ5̇(Q)− ,

f̂a
µ = fa

µ − i

2
ψ̄µ+Γ5R̂

a
5̇
(Q)− − 1

6
ǫ abc
µ

(

D̂bvc5̇ +
1

2
R̂ 5̇

bc (V )

)

+
1

4
R̂ a5̇

µ5̇
(M).

(3.5)

This boundary restricted multiplet corresponds to the gauge fields of 4D superconformal

symmetry [10 – 13].

The graviphoton AM can also couple at the boundary via a parity even real general

type 4D multiplet made from its gauge invariant field strength [22].

V =

(

M,−2iΓ5Ω−, 2Y
1, 2Y 2, F̂a5̇ + 2va5̇M,−2D̂5̇Ω+ + 2iγava5̇Ω− − i

4
Γ5χ+M,

D̂2
5̇
M − 2D̂5̇Y

3 − 1

4
CM + va

5̇
(2F̂a5̇ + va5̇M) +

1

2
χ̄+Ω−

)

.

(3.6)

It has a superconformal weight (w,n) = (1, 0) and has the lowest component given by

“dilaton” M . Note that w, n denote Weyl weights, chiral weights respectively and n is

related to the standard chiral weights (or R-charge), R, via n = 3
2R.

Each 5D hypermultiplet is decomposed into a vector-like pair of N=1 chiral multiplets

with weight (w,n) = (3/2, 3/2) under the S1/Z2 orbifolding [22], i.e.

P = +1 : (A2α̂
i=2,−2iPRζ

2α̂, iF 2α̂
i=1 + D̂5̇A

2α̂
i=1) ,

P = −1 : (A2α̂−1
i=2 ,−2iPRζ

2α̂−1, iF 2α̂−1
i=1 + D̂5̇A

2α̂−1
i=1 ) .

(3.7)

3The definitions of the supercovariant curvatures such as R̂
µ5̇(Q) in the right hand side in eq. (3.5) are

given in ref. [22]. The definition of Γ5 is given in appendix A.
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3.3 SUSY multiplets in the 4D effective theory

After compactification, most field modes get masses of order 1/r, where πr is the length of

the extra dimension. The approximate zero-modes are x5-independent (hence parity-even)

fields. The most obvious of these are C,H and the 4D Weyl (gravity) multiplet. These

are the analogs of the boundary-induced fields in the subsection 3.2, except for being x5-

independent as opposed to restricted to the boundaries. The 4D Weyl multiplet zero-mode

forms the gauge fields of the preserved 4D superconformal symmetry of the effective field

theory below the compactification scale.

In addition, we should include boundary-localized fields (to be discussed) as well as a

4D radion multiplet. One can form a radion chiral multiplet incorporating the zero-modes

of e5̇5 and A5 [22],

−2iΣ =
(

e5̇5M − iA5,−4i ψ5−M + 4e5̇5Γ5Ω−,−2i(V 1
5 + iV 2

5 )M

− 2e5̇5(Y
1 + iY 2) + 2iψ5−(1 + Γ5)Ω−

)

.
(3.8)

The 4D effective theory also has the zero-mode e5̇5 appearing within a 4D radion general

multiplet [22],

W =

(

e5̇5,−2iψ5−,−2V 2
5 , 2V

1
5 ,−2va5,

i

4
Γ5χ+e

5̇
5 + 2φ5+ + 2Γ5γ

bvb5̇ψ5−,

(

1

4
C − (va5̇)

2

)

e5̇5 − ef 5̇
5 +

i

4
χ̄+Γ5ψ5−

)

.

(3.9)

In general, both these forms of radion field are required to write the locally supersymmetric

4D effective Lagrangian.

4. Bulk potential for 4D scalars

In order to determine the supergravity and stabilization background in which the visible

sector fields propagate we must determine the VEVs of all fields in the 4D Poincaré invariant

vacuum. This requires us to minimize the classical potential for all 4D scalars, even when

these scalars arise from extra-dimensional components of 5D vectors and tensors. In this

section we summarize the contribution to this potential from 5D bulk action [18]. The

most general 4D Poincaré invariant geometry is given by the warped metric

ds2 = e2σ(ϕ)ηµνdx
µdxν − r2dϕ2 . (4.1)

We are taking the fifth dimensional coordinate to be the “angle” ϕ. While we do not wish

to consider a highly warped spacetime, a mild warp factor will necessarily arise below as a

backreaction to the stabilizing fields.

The effective potential from plugging in the 4D Poincaré invariant ansatz into the bulk

action can be economically written in compact flat (global) 4D superspace notation (see

– 9 –
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appendix B for the derivation. See refs. [31 – 33] for related work4)

−Vbulk =−
∫ π

0
dϕ

{
∫

d4θ e2σ 1

2
(T+T ∗)

(

2CC∗+2C̄C̄∗−H∗e
2√
3
m Ṽ

H−H̄e−
2√
3
m Ṽ

H̄∗+
1

2
Ṽ3

)

+

∫

d2θ e3σ

(

H(
1

2

↔
∂5 + 2imΣ)H̄ −C

↔
∂5 C̄ +

i

2
Σ W̃αW̃α + h.c.

)

+ e4σr
{

−6M |Y |2 + V 3
5 V

3 5A2

+(2mHH̄Y +iV 3
5 (H∗∇5H+H̄∗∇5H̄−2C∗∂5C−2C̄∗∂5C̄)+h.c.)

}

+e4σr C′(A2 + 2M3)
}

,

(4.2)

in terms of the “fake” flat superspace multiplets,

Ṽ =
1

2
θ2θ̄2(

√
3 e2σD) , W̃α = θα e

σ/2
√

3D ,

Ṽ = M − θ2θ̄2∂5̇(e
2σ D) ,

T =
−2i

M
Σ = T + θ2eσFT , T ≡ r − i

M
A5 ,

C = C + θ2eσFC , C̄ = C̄ + θ2eσFC̄ , H=H+θ2eσFH , H̄=H̄+θ2eσFH̄ ,

A2 = 2(−|C|2 − |C̄|2 + 1/2|H|2 + 1/2|H̄ |2) .
(4.3)

These fields are all functions of ϕ. Note that H,H̄ ,C,C̄ in the above equations are conve-

nient renaming of the 4D N=1 hypermultiplets given by eq. (3.7): the scalar components

of these fields are related to A2α̂
i=2, A

2α̂−1
i=2 in eq. (3.7), e.g. H ≡ A4

2, H̄ ≡ A3
2, C ≡ A2

2,

and C̄ ≡ A1
2 (Similarly for the F terms of eq. (3.7)). Similarly D in the first and second

equations of eq. (4.3) is covenient renaming of Y 3 (see eq. (B.11) in appendix B). The F
terms and D term, as functions of the original 5D F terms and other 5D fields, are given

in appendix B. We will not require these expressions for our analysis. While the straight

F denotes F-term appearing in the 5D Lagrangian the curly F ’s denote those of the 4D

chiral supermultiplets.

The covariant derivative in eq. (4.2) is defined as

∇5H = (∂5 − imA5)H , ∇5H̄ = (∂5 + imA5)H̄ . (4.4)

The C′ is simply a Lagrange multiplier which forces the following contraint of the 5D

superconformal gravity (see ref. [18] for the relation between C and C′),

M3 = |C|2 + |C̄|2 − 1

2
|H|2 − 1

2
|H̄|2 . (4.5)

Note that in 5D supergravity a hypermultiplet mass m must also be hypermultiplet charge

for the central charge gauge boson, AM . Also note that under parity ∂5 is odd while A5 is

even. Therefore, in the orbifolded theory we are forced to consider the hypermultiplet mass

to be ϕ-dependent, m = m0 ǫ(ϕ), where ǫ(ϕ) is equals to +1 for ϕ > 0 and −1 for ϕ < 0.

4See refs. [34, 35] for some early development of using 4D superspace for 5D action.
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It is convenient to write in the flat superspace notation because all the θ-dependent

components of eq. (4.3) as well as V 3
5 and Y ≡ Y 1 + iY 2 form the 4D N=1 supersymme-

try order parameters. In particular, their vanishing (and the vanishing of any boundary

auxiliary fields) in a classical solution guarantees the preservation of 4D supersymmetry.

Note that 5D auxiliary fields such as F are order parameters of the 5D supersymemtry

not the 4D subalgebra. These are less informative since orbifolding has already broken 5D

supersymmetry.

Note that the bulk potential given by eq. (4.2) has the explicit dependence of M

and C̄ which means that the scale invariance and SU(2) U symmetry have not yet been

gauge-fixed.

5. Boundary physics

Boundary action terms invariant under the N=1 4D local supersymmetry are formed

straightforwardly by writing 4D superconformal invariants in the standard fashion, but

using the boundary-induced 4D gravitational fields.

5.1 The visible sector classical action

The visible action to be added to the bulk action takes the form

Svis =

∫

d5x
δ(ϕ − π)

r
Lvis . (5.1)

We consider the visible sector consisting of N=1 chiral superfields, Q as well as some gauge

supermultiplets V . These dynamical fields couple to the 4D Poincaré invariant VEVs of

the boundary-induced bulk fields.

Lvis =

∫

d4θ e2σ (CC∗)2/3 f(Q,Q∗, V,H ′,H ′∗, ∂5C̄
′, ∂5C̄ ′∗, ∂5H̄

′, ∂5H̄ ′∗, V ′)

+

∫

d2θ e3σ (C2Wvis(Q) + JπCH) + h.c.

+

∫

d2θ τ(Q)WαWα + h.c. .

(5.2)

We have explicitly written a superpotential for the hypermultipet fields to aid in radius

stabilization. Note that we have chosen these protected couplings Wvis and τ to be inde-

pendent of the bulk fields, as is technically natural.

Here, we have written the most general Kähler term constrained to have superconfor-

mal weight (2, 0). For this purpose it has been convenient to define the primed combinations

of the boundary-induced bulk fields with zero superconformal weight (0, 0),

V ′ =
V

(CC∗ + C̄C̄∗ − 1/2 HH∗ − 1/2 H̄H̄∗)1/3
, (H ′, H̄ ′, C̄ ′) =

(H, H̄, C̄)

C
. (5.3)

Note that the e5̇5-dependent “radion” multiplet Σ and W can not couple gauge invariantly

to the boundary as explained in ref. [22].
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The visible action appears very similar to purely 4D action in superconformal gravity if

one makes the field redefinition C → C2/3 in order to get the more familiar 4D compensator

of weight (1, 1). However we will stick to our weight (3/2, 3/2) compensator definition

inherited from the bulk theory.

5.2 Sequestering

In section 8 we will show the very important result that, after radius stabilization, the VEVs

of all the primed fields in eq. (5.3) have negligible 4D supersymmetry breaking components.

That is, these VEVs are essentially pure numbers which merely renormalize the visible

Kähler and superpotentials. Therefore, the visible sector fields effectively propagate in

only an induced-compensator background,

Lvis =

∫

d4θ e2σ (CC∗)2/3 f(Q,Q∗, V )

+

∫

d2θ e3σ (C2Wvis(Q) + JπCH) + h.c.

+

∫

d2θ τ(Q)WαWα + h.c. .

(5.4)

In particular the only 4D supersymmetry breaking felt by the visible sector fields comes

from FC . This feature is sequestering.

5.3 Visible quantum dynamics and anomaly mediation

The compensator-dependence of the visible action is dictated by the requirement of main-

taining exact superconformal gauge symmetry. To focus on this aspect we will keep only

the renormalizable terms of the visible sector fields.

Lvis ≈
∫

d4θ e2σ (CC∗)2/3Q∗eV Q

+

∫

d2θ e3σ C2 (mQQ
2 + λQ3) + h.c.

+

∫

d2θ τWαWα + h.c. .

(5.5)

Now redefine eσ C2/3Q→ Q to arrive at

Lvis ≈
∫

d4θ Q∗eVQ

+

∫

d2θ (mQ e
σ C2/3Q2 + λQ3) + h.c.

+

∫

d2θ τWαWα + h.c. .

(5.6)

In this form it is clear that eσ C2/3 compensates for the breaking of superconformal invari-

ance due to visible masses.
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However, at the quantum level the running of visible couplings also violates supercon-

formal invariance and it is vital that C also compensates for this,

Lvis ≈
∫

d4θ Z
(

µ eσ(CC∗)1/3
)

Q∗eV Q

+

∫

d2θ (mQ e
σC2/3Q2 + λQ3) + h.c.

+

∫

d2θ τ1−loop(µ e
σC2/3)WαWα + h.c. .

(5.7)

As reviewed in Introduction this leads to the pattern of anomaly mediated supersymmetry

breaking in the visible sector, seeded by FC .

This demonstration of anomaly mediation on the visible boundary directly in the 5D

set-up (once we demonstrate the suppression of SUSY breaking within the primed bulk

fields, as done in section 8), is one of the main results of this paper.

5.4 The hidden sector and SUSY breaking

The hidden sector action takes the form

Shid =

∫

d5x
δ(ϕ)

r
Lhid , (5.8)

where Lhid takes the entirely analogous form to Lvis with the visible sector fields replaced

by some hidden sector fields responsible for supersymmetry breaking at the intermediate

scale Λ ∼ 1011.5 GeV. The warp factor eσ(ϕ) can be taken to be unity at any point in the

extra-dimensional interval. We will choose this location to be at the hidden boundary,

σ(ϕ = 0) = 0. We assume that all hidden sector VEVs (whether SUSY breaking or

preserving) are at most of order Λ to the appropriate power, and all hidden masses are of

order Λ or above, except for a massless Goldstino eaten by the 4D effective gravitino.

The bulk couplings are only a slight perturbation to the massive hidden sector dynam-

ics. Therefore the hidden VEVs are effectively given quantities that we can treat as sources

for the bulk fields via their coupling in Shid. At this level, the dominant contributions to

the effective potential for 4D scalars is given by

−Vhid = −Λ4 +

∫

d2θ (cC2 + J0CH) + h.c. . (5.9)

Again the hypermultiplet superpotential will aid in radius stabilization, while the constant

superpotential with coefficient c will be adjusted to cancel the 4D effective cosmological

constant when supergravity effects are taken into account. Predominantly, this cancellation

is against the positive supersymmetry breaking Λ4 vacuum energy. Therefore c ∼ Λ2M4,

where M4 is the effective 4D Planck scale.

There are also a variety of other couplings of hidden VEVs to bulk fields possible in

Shid, essentially Λ-scale or smaller sources for bulk fields. These will have far weaker effects

than the other sources, such as J , that we consider. However, we will have to consider

such couplings more carefully when we are discussing the delicate issue of sequestering and

visible SUSY breaking, in section 8. We will find that there too they play a negligible role.
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6. Supersymmetric radius stabilization

We will study the supersymmetric radius stabilization introduced in ref. [7], and studied in

the formalism of 5D superconformal tensor calculus in ref. [36]. However our treatment will

be somewhat different. Natural expansion parameters in our perturbative setup for the su-

persymmetric radius stabilization are Jπ and 5D hypermultiplet mass m0. We are consider-

ing Jπ greater than J0. We are dropping the constant superpotential c which is a supersym-

metric coupling, but the 4D cosmological constant cancellation will relate it to SUSY break-

ing Λ4, and so we only include it when considering supersymmetry breaking in section 7.1.

The stabilization mechanism of radius modulus determines the size of extra-dimension

in terms of these 5D parameters, i.e.

1

πr
∼ m0

(

ln
Jπ

J0

)−1

, (6.1)

as will be discussed in detail in subsection 6.1. The 4D Planck mass, M4, is also uniquely

related to the size of extra-dimension by the relation (Recall that we are working in a 5D

Planck unit, M5 ≡ 1.),

M2
4 = πr . (6.2)

The canonical mass of the radius modulus below the compactification scale is determined

to be roughly

m2
radion ∼ m3

0πr |J0|2
1 − e−2m0πr

. (6.3)

This will be discussed in subsection 6.2.

6.1 Stabilization and preserved SUSY

The stabilization of radius modulus is carried out by the couplings of H to the boundaries

as well as 5D mass of the hypermultiplet as was indicated in eq. (6.1) [7, 36].

−Veff = −
∫

dϕ

{

Vbulk +

∫

d2θ e3σ (δ(ϕ)J0CH − δ(ϕ− π)JπCH + h.c.)

}

. (6.4)

That is, in this section we are neglecting visible sector, the SUSY breaking hidden sector,

and the constant hidden superpotential, c, whose effect is to cancel the 4D SUSY breaking

vacuum energy. The form of Vbulk is given by eq. (4.2).

After performing superspace integration of the above full effective potential, the form
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in terms of 4D auxiliary fields is given by

−Veff =

∫

dϕ e4σ

{

− 3

2
rD2 − 3D(∂5σ) +mrD(|H|2 − |H̄ |2)

− 2r|FC |2 − 2r|F∗
C̄ |2 + r|FH |2 + r|FH̄ |2 − 6r|Y |2 − 2rV 3

5 V
3 5

+2FC

{

−1

2
C∗F∗

T −
(

∂5+
3

2
∂5σ

)

C̄− 1

2
J0Hδ(ϕ)+

1

2
JπHδ(ϕ−π)

}

+h.c.

+ 2FC̄

{

−1

2
C̄∗F∗

T +

(

∂5 +
3

2
∂5 σ

)

C

}

+ h.c.

+ FH

{

1

2
F∗

TH
∗+

(

∂5+
3

2
∂5σ−mT

)

H̄−J0Cδ(ϕ)+JπCδ(ϕ−π)

}

+h.c.

+ FH̄

{

1

2
F∗

T H̄
∗ −

(

∂5 +
3

2
∂5σ +mT

)

H

}

+ h.c.

−mHH̄FT + h.c.

+2mrHH̄Y +irV 3
5 (H∗∇5H+H̄∗∇5H̄−2C∗∂5C−2C̄∗∂5C̄)+h.c.

}

.

(6.5)

As was discussed in section 4, all the θ-dependent components of eq. (4.3) as well as

V 3
5 and Y form the 4D N=1 supersymmetry order parameters. Therefore, when these

supersymmetry order parameters vanish the corresponding field configuration preserves

4D N=1 supersymmetry. These supersymmetry order parameters are given in terms of

other fields by their equations of motion from eq. (6.5),

F∗
H̄ =

1

r

{(

∂5 +
3

2
∂5σ +mT

)

H − 1

2
F∗

T H̄
∗
}

,

F∗
H = −1

r

{(

∂5 +
3

2
∂5σ −mT

)

H̄ − J0 Cδ(ϕ) + Jπ Cδ(ϕ − π) +
1

2
F∗

TH
∗
}

,

F∗
C̄ =

1

r

{(

∂5 +
3

2
∂5σ

)

C − 1

2
F∗

T C̄
∗
}

,

F∗
C = −1

r

{(

∂5 +
3

2
∂5σ

)

C̄ +
J0

2
Hδ(ϕ) − Jπ

2
Hδ(ϕ − π) +

1

2
F∗

TC
∗
}

,

0 = −mHH̄ +
1

2
HF∗

H +
1

2
H̄F∗

H̄ − C̄F∗
C̄ − CF∗

C ,

Y ∗ =
1

3
mHH̄ ,

D =
1

3
m(|H|2 − |H̄ |2) − (∂5σ)

r
,

V 3
5 =

i

4
(H∗∇5H + H̄∗∇5H̄ − 2C∗∂5C − 2 C̄∗∂5C̄) + h.c. ,

(6.6)

where the definitions of ∇5H, ∇5H̄ are given by eq. (4.4). We also integrate out C′,
appearing in eq. (4.2), resulting in the constraint

|C|2 = 1 − |C̄|2 +
1

2
|H|2 +

1

2
|H̄|2 . (6.7)
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In the remainder of this section we will solve the set of equations,

FH,H̄,C,C̄,T = Y = D = V 3
5 = 0 , (6.8)

that gives rise to 4D N=1 supersymmetric field configuration. Note that the solutions of

the set of equations of motion given by plugging eq. (6.8) in eq. (6.6) also satisfy the full

set of second-order differential equations of the propagating fields as is clear in the form of

eq. (6.5). Further, we will seek a solution with C̄ = 0.

The solution of the second equation of eq. (6.6) is then given by5

H̄(x, ϕ) = ǫ(ϕ)
J0

2
C(0) em0T |ϕ|+ 3

2
(σ(ϕ)−σ(0)) (6.9)

and, to the leading order of J , to match the delta functions

J0 − Jπ e
−m0Tπ ∼ 0 , (6.10)

since to the leading order of Jπ we can neglect warp factor. J0, Jπ can be made real by

absorbing their phases into H, C. Therefore, the VEV of T is just equal to r. Solving for

r using eq. (6.10) gives us eq. (6.1). Taking into account that H̄ has a non-vanishing field

configuration, Y = 0 equation of eq. (6.6) implies

H(x, ϕ) = 0 . (6.11)

The first and fourth equations of eq. (6.6) are now automatically satisfied. The warp factor

σ is determined by D = 0 equation of eq. (6.6) to be

∂5σ = −1

6
m(T + T ∗)|H̄|2 . (6.12)

Note that the integration constant of σ is determined by our convention, σ(ϕ = 0) = 0.

The third equation of eq. (6.6) gives rise to

0 = ∂5|C| + 3

2
(∂5σ)|C| + i(∂5ϑ)|C| , (6.13)

where C was parameterized as C = |C|eiϑ. The imaginary part of the above equation gives

rise to

∂5ϑ = 0 . (6.14)

Using the constraint of C given by eq. (6.7) (with C̄=0 as mentioned above) and the

solution of H̄ given by eq. (6.9), the real part of eq. (6.13) reduces to

0 =
1

2
∂5|C|2 +

3

2
(∂5σ)|C|2

=
1

4
(m(T + T ∗)|H̄|2 − 3(∂5σ)|H̄ |2 ) +

3

2
(∂5σ)

(

1 +
1

2
|H̄ |2

)

.
(6.15)

5The identity,

(ǫ(ϕ))2δ(ϕ) =
1

3
δ(ϕ) ,

( similarly for δ(ϕ − π)) is used to treat the ǫ(ϕ) functions inside C given by eq. (6.7) [37].
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In the second equality, we have used an identity, (ǫ(ϕ))2n+1δ(ϕ) = 0 (n= integer). The

above equation is automatically satisfied by eq. (6.12). The last equation of eq. (6.6) is

also automatically satisfied by eqs. (6.9), (6.11), (6.12) and (6.14).

In this way we have solved all of equations of eq. (6.6) supersymmetrically, i.e. subject

to eq. (6.8).

Since the full effective potential is quadratic in the supersymmetry order parameters,

i.e.

Veff =

∫

dϕ e4σ

(

r|FH |2 + r|FH̄ |2 − 2r|FC |2 − 2r|FC̄ |2 −
3

2
rD2

+mHH̄FT +mH∗H̄∗F∗
T − 6r|Y |2 +

2

r
(V 3

5 )2
)

,

(6.16)

the resulting vacuum energy on the locally supersymmetric solutions that satisfy the full

set of equations in eq. (6.8) identically vanishes,

Veff = 0 . (6.17)

6.2 Mass of radion

The mass of radion can be easily estimated from the 4D effective theory below the com-

pactification scale. The 4D effective theory is described by the zero modes represented by

T , H0 and C0 in this case while the other fields get masses of order ∼ 1
r and they can be

integrated out in a supersymmetric way. In order to derive the 4D effective theory of these

light fields, we solve the equations of motion given by eq. (6.6) supersymmetrically with

J0,π = 0 (In this limit these light fields become massless), e.g.

H(x, ϕ) = H0(x) e
−m0T |ϕ| . (6.18)

After plugging in eq. (6.18) as well as C0, T as supermultiplets, including their F terms,

into eq. (6.4) and performing the ϕ-integration, the 4D effective theory for T , H0 and C0,

to the leading order of Jπ, is given by

−Veff ≈
∫

d4θ − (T + T ∗)|C0|2 +
1

2m0
(1 − e−m0(T+T ∗))|H0|2

−
∫

d2θ (J0 − Jπe
−m0T )H0C0 + h.c.

− 6πr|Y |2 + (m0rπJ0H0Y + h.c.) .

(6.19)

Here, π from ϕ−integration was absorbed into T . Note that supersymmetrically the sta-

bilization gives rise to a supersymmetric Dirac mass for δT and H0 as is clear in the 4D

effective superpotential in eq. (6.19). The kinetic term of radion are given by the well-

known no-scale structure [38],

Lradion = −√−g πrR . (6.20)

At leading (zeroth) order in J , the hypermultiplets have a conserved hypermultiplet num-

ber, so that they can not correct the radion effective action at tree level.
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The radion has its kinetic term in the Einstein frame via a Weyl transformation,

gµν =
M2

4

2πr g̃µν , i.e.

Lradion =
√−g (−πrR− Veff)

=
√

−g̃
(

−M
2
4

2
R̃ +

3

4
M2

4

(∂µr)
2

r2
− Ṽeff

)

.
(6.21)

Expanding about supersymmetric VEVs, following from eqs. (6.10) and (6.11), the

Einstein-frame effective potential to quadratic order in the fluctuations δT , H0 is

Ṽeff =
M4

4

4π2r2
Veff

≈ M4
4

4π2r2

(

11

6
πm2

0r|J0|2|H0|2 +
2m3

0|J0|2
1 − e−2πm0r

|δT |2
)

.

(6.22)

We can get the physical mass of the Dirac state by just getting the mass of the scalar

radion δT . It does not mix with H0 as can be seen in eq. (6.22). Given the form of the

kinetic term of the radion in eq. (6.21), the physical mass of the radion is given by,

m2
radion ≈ 2

3

m3
0πr|J0|2

1 − e−2πm0r
. (6.23)

This recovers the results of refs. [7, 36] (in their unwarped limits).

This implies that the 4D effective theory, below the stabilization scale ∼ mradion, only

contains C0 (as well as the light fields of the visible and hidden sectors).

7. The SUSY-breaking vacuum

In order to discuss the supersymmetry breaking we add a constant superpotential c to

our effective potential given by eq. (6.4). Therefore, the natural expansion parameters in

our perturbative setup now are Jπ, m0 and the constant superpotential c. The constant

superpotential c≪ Jπ,m0 is related to the supersymmetry breaking vacuum energy ∼ Λ4

by the 4D cosmological constant cancellation,

Λ4 ∼ |c|2
M2

4

. (7.1)

In this sense the constant superpotential c usefully parameterizes supersymmetry breaking.

It induces a deviation from the supersymmetric VEVs. e.g. the deviation of the VEV of

H0, the zero mode of H, is of order c,

H0 ∼ c

πm0rJ0
. (7.2)

This will be discussed in section 7.1.

The “seed” of AMSB, FC/C, is given by the VEV of H0 in the bulk from the 5D

perspective,
FC

C
∼ −(ǫ(ϕ))2

1

2
m0 J

∗
0H

∗
0 , (7.3)

as will be discussed in section 7.2.
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7.1 Supersymmetry breaking

We now consider the effects of the constant superpotential c introduced in eq. (5.9) (and

Λ4 which ensures that we are correctly expanding about a 4D Poincaré invariant vacuum).

The approximate 4D effective potential of the zero modes of the light fields T , H0 and

C0 is now given by

−Veff ≈
∫

d4θ − (T + T ∗)|C0|2 +
1

2m0
(1 − e−m0(T+T ∗))|H0|2

−
∫

d2θ C0{(J0 − Jπe
−m0T )H0 + c} + h.c.

− 6πr|Y |2 + (m0rπJ0H0Y + h.c.)

− Λ4 .

(7.4)

This is just eq. (6.19) with the addition of c and Λ4.

Any deviation from the supersymmetric VEVs, discussed in section 6, must be pro-

portional to some power of c. Noting this, after performing superspace integration, the 4D

effective potential to order c2 is given by

Veff ≈11

6
π|J0|2m2

0r |H0|2 − ( 2 c∗J0m0H0 + h.c.)

+
2m0

1 − e−2πm0πr
|J0|2m2

0|δT |2 + Λ4 .
(7.5)

Since to order c2 the δT has only a quadratic term, at the minimum of the 4D effective

potential of eq. (7.5)

δT ∼ O(c2) . (7.6)

Now, in order to analyze the remaining part of eq. (7.5), we parameterize H0 as

H0 = |H0|eiθ, and minimize the 4D effective potential with respect to θ:

Veff ≈ 11

6
π|J0|2m2

0r |H0|2 − 4|c||J0|m0|H0| + Λ4. (7.7)

Finally, minimizing the above effective potential with respect to |H0| gives the minimum,

Vmin ≈ −24

11

|c|2
πr

+ Λ4 at H0 ≈ 12

11

c

πm0rJ0
. (7.8)

The cancellation of the 4D cosmological constant relates the constant superpotential c to

the positive vacuum energy,

Λ4 ≈ 24

11

|c|2
M2

4

. (7.9)
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7.2 Relation between compensator and stabilization

After some algebra, using the first five equations in eq. (6.6), one can obtain the expressions

of FH,H̄,C,C̄,T in terms of the non-auxiliary fields. In particular,

F∗
C

C∗ = −mHH̄ − 2|C̄|2 − |H|2 − |H̄|2
2r C∗

{(

∂5 +
3

2
∂5 σ

)

C̄ +
J0

2
Hδ(ϕ) − Jπ

2
δ(ϕ − π)H

}

− H

2r

{(

∂5 +
3

2
∂5 σ −mT

)

H̄ − J0Cδ(ϕ) + JπCδ(ϕ− π)

}

+
H̄

2r

(

∂5 +
3

2
∂5 σ +mT

)

H − C̄

r

(

∂5 +
3

2
∂5 σ

)

C .

(7.10)

The constraint of the lowest component of C is given by eq. (6.7).

It is convenient to work with parity even fields h̄(x, ϕ), c̄(x, ϕ) by parameterizing as

H̄(x, ϕ) ≡ ǫ(ϕ)h̄(x, ϕ), C̄(x, ϕ) ≡ ǫ(ϕ)c̄(x, ϕ). The boundary values of h̄, c̄ are determined

by their equations of motion (see ref. [24] for related discussion), e.g. the singular parts of

the equations of motion of H̄, C̄ from the eq. (6.5) imply

0 = −e
4σ

r
∂5{2(δ(ϕ) − δ(ϕ − π))h̄− J0Cδ(ϕ) + JπCδ(ϕ− π)} ,

0 = −2
e4σ

r
∂5

{

2(δ(ϕ) − δ(ϕ − π))c̄+
J0

2
Hδ(ϕ) − Jπ

2
Hδ(ϕ− π)

}

.

(7.11)

Solving the above equations gives rise to

c̄(x, 0) = −J0

4
H(x, 0) , c̄(x, π) = −Jπ

4
H(x, π) ,

h̄(x, 0) =
J0

2
C(x, 0) , h̄(x, π) =

Jπ

2
C(x, π) .

(7.12)

These boundary values also remove all the singularities inside FC , FH (therefore, singular-

ities inside FT as is indicated by the fourth equation of eq. (6.6))

Taking into account that the VEV of H0 ∼ O(c) (see eq. (7.8)), c̄(x, ϕ) is order c by

eq. (7.12). Note that unlike the supersymmetric case in which the VEV of H0 vanishes,

the parity odd C̄ becomes discontinuous at the boundary.

Given the profiles of H, H̄ and the warp factor σ given by eq. (6.12), FC/C to the

leading order of our expansion parameters is approximately given by

FC

C
∼ −mH∗H̄∗ ∼ −(ǫ(ϕ))2

1

2
m0 J

∗
0H

∗
0 . (7.13)

A similar result was derived in ref. [7] from 4D EFT viewpoint. The above expression

implies that the “seed” of AMSB, FC/C, gets a non-trivial contribution only via the VEV

of a stabilizing field in the bulk. Using the result given by eq. (7.8), the 5 dimensional

– 20 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
4

FC/C is given by6

FC

C
= −(ǫ(ϕ))2

c∗

2πr

= −(ǫ(ϕ))2
c∗

2
m0

(

ln
J∗

0

J∗
π

)−1

.

(7.14)

Eq. (7.13) shows us that on-shell it is the stabilizing fields that are communicating SUSY

breaking to the visible sector. Since these are not gravitational or gauge fields one might

have expected their couplings to visible fields to be unconstrained enough that a rather

general pattern of visible SUSY breaking would result. It is remarkable therefore that

the SUSY breaking is communicated dominately via eq. (7.13) and its highly constrained

couplings to the visible sector, resulting in the very specical pattern of AMSB. That other

forms of SUSY breaking coupling are subdominant is argued below. This is the content

of sequestering.

8. 4D effective theory and sequestering

Here, we demonstrate sequestering at tree level, namely the primed bulk fields induced on

the visible boundary have only supersymmetric VEVs, with negligible corrections, leading

to the dominance of AMSB as discussed in section 5. This has not been previously done.

We would like ideally to do this in a direct 5D analysis for maximal transparency but have

not managed to do this, and so we instead we will partly exploit the organizing power of

the 4D effective field theory below the compactification and stabilization scales. We are

considering in this paper a hierarchy of scales,

1/r ≫ mradion ≫ Λ, (8.1)

and will later show samples of parameter inputs that achieve this. Therefore it makes

sense to study the effects of SUSY breaking within a 4D effective field theory below the

radion stabilization scale. Below this scale the only light 4D multiplets are the visible

fields, the hidden sector fields, and 4D effective supergravity fields, including in particular

the compensator zero-mode, C0. If sequestering fails, that is if the prime fields in section 5

acquire non-negligible SUSY breaking VEVs then clearly, by choice of couplings to the

visible fields in eq. (5.2), they can induce new visible soft terms. This visible SUSY breaking

must be accounted for in the 4D EFT by visible couplings to C0 and/or hidden fields,

constrained by the effective 4D superconformal tensor calculus. We will show that this

cannot happen without great suppression.

Let us begin by considering couplings which do involve hidden fields. The danger is in

Kähler terms of the form
∫

d4θ Q∗eVQX, (8.2)

6Recall that (ǫ(ϕ))2n δ(ϕ) (n=integer) gives rise to a non-vanishing contribution while (ǫ(ϕ))2n+1 δ(ϕ) =

0.
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where X is a composite of hidden sector fields. For simplicity, we assign X weight (2, 0)

so the compensator is unnecessary. Hidden SUSY breaking VEVs in X will certainly

contribute to visible SUSY breaking, and spoil sequestering, if such a coupling arises from

matching to 5D. But does it? Since the hidden and visible fields are spatially separated

in 5D, effective couplings like the one above can only arise through integrating out some

bulk fields that couple to both boundaries. Focussing on the hidden boundary, the leading

contributions at tree-level (we deal with loops in section 9) arise from Kähler couplings

of X to bulk fields in Shid. At tree level precisely one of these bulk fields contracts with

a Feynman diagram that ends on the visible sector, while the remaining bulk fields are

set to their supersymmetric VEVs. We will use the primed basis for the 4D induced bulk

superfields defined in subsection 5.1, and put a prefix “δ” to indicate the one which connects

to the visible sector. Then the general set of allowed Kähler couplings are of the form,

∫

d4θXδC × SUSY VEVs ,

∫

d4θXδ∂5C̄
′ × SUSY VEVs ,

∫

d4θXδH ′ × SUSY VEVs,
∫

d4θXδ∂5H̄
′ × SUSY VEVs ,

∫

d4θXδV ′ × SUSY VEVs. (8.3)

Since the SUSY VEVs are pure numbers they can be subsumed into the arbitrary coeffi-

cients of these couplings.

Let us look at the special features of such terms. Since boundary restricted δC, δC̄ ′,

δH ′, δH̄ ′ are 4D chiral multiplets and since we are only interested in the tree level potential,

we can drop xµ-dependence so that the
∫

d2θ̄ only applies to X, giving a chiral result. That

is, without loss of generality we could just as well have considered X to be chiral in these

cases, and coupled as

∫

d2θX δC ,

∫

d2θX δ∂5C̄
′ ,
∫

d2θX δH ′ ,
∫

d2θX δ∂5H̄
′ . (8.4)

The soft visible mass-squareds from eq. (8.2) are then order |FX |2. If the hidden sector

does not contain hidden gauge symmetry singlets, then X is necessarily a composite

field and FX has dimension at least 3, FX ∼ O(Λ3). The soft visible mass-squareds will

therefore be order Λ6.

If X is non-chiral in eq. (8.2), then there will be soft visible mass-squared of order

DX . Since non-chiral X gauge invariants begin at dimension 2, DX can have dimension

4, DX ∼ O(Λ4). This is the “going rate” for worrying about non-sequestering. Indeed δV ′

is non-chiral and one might worry that it couples to DX in eq. (8.3). But this coupling is

DX δM ′ where the lowest component of V ′ is given by

M ′ =
M

(|C|2 + |C̄|2 − 1/2 |H|2 − 1/2 |H̄ |2)1/3
. (8.5)

By the constraint of eq. (4.5), M ′ ≡ 1, δM ′ = 0, so DX is not mediated to the visible

sector. It is very important to note that if we had had further bulk vector multiplets

beyond the “graviphoton” multiplet, then we can really mediate visible couplings to non-

chiral X, because the scalar components of such vector multiplets are not constrained like
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M ′. Thus we have a “special bulk content” in this sense, although we are within our

rights to choose the light particle content of the bulk as effective field theorists. But a

string theory construction along these lines would have to check this precondition. See

ref. [39, 30] for related discussion of this point.

Since the cutoff of 4D EFT is mradion the suppression of visible soft mass-squareds

that we have demonstrated, by Λ2 compared to going rate corresponds to a dimensionless

suppression of at least Λ2/m2
radion. In this paper, we take the simple approach of ensuring

that Λ2/m2
radion is very small, numerically of order 10−7, so as to adequately suppress its

contributions compared with AMSB by enough so to retain the attractive AMSB solution

to the supersymmetric flavor problem.

We have shown that we can neglect hidden sector fields in checking sequestering, but

this still leaves effective visible-compensator couplings to check. By 4D superconformal

gauge symmetry of low energy supergravity in the superconformal tensor calculus, the

leading tree level couplings of the visible sector to a Poincaré invariant VEV of the 4D

supergravity fields, must simply be given by

Leff =

∫

d4θ Q†eVQ+

∫

d2θW (Q,C0) +

∫

d2θ
1

g2
W2

α + h.c., (8.6)

where the superpotential is exactly cubic in fields to maintain classical conformal invariance.

This form manifests the compensating role of C0 in the effective theory. Here Q has unit

superconformal weight. The corresponding more standard form with zero weight for Q is

given by

Leff =

∫

d4θ |C0|2Q†eV Q+

∫

d2θ C3
0W (Q) +

∫

d2θ
1

g2
W2

α + h.c., (8.7)

where the new Q is Q/C0 in terms of the old. Note that C0 is the standard version of the

effective 4D compensator with superconformal weight (1, 1).

We see that any classically conformally invariant visible sector will feel no SUSY break-

ing at tree-level from supergravity VEVs, in particular FC0
, that is no breaking of seques-

tering. But we must consider higher (super-)derivative couplings of C0 to the visible sector,

that might arise in the 4D effective theory upon careful matching to the 5D theory. Rather

than doing such a matching, we again place crude bounds: extra superderivatives are sup-

pressed by powers of at least the cutoff of the 4D EFT, mradion, so that this source of

visible soft mass-squareds is also suppressed by the dimensionless Λ2/m2
radion, compared to

the going rate. (If the superderivatives were not required we would have gotten soft terms

of order |FC0
|2 ∝ Λ4.) Again, we will find this suppression is enough to neglect this source

of visible SUSY breaking compared to AMSB.

This observation that Λ2/m2
radion suppresses non-sequestered contributions is the main

value added by the effective theory organization of corrections.

9. Bulk radiative corrections

The spectrum of pure AMSB applied to MSSM has a serious problem, namely the negative

mass squared of the sleptons. However, this can be compensated by other positive flavor-

conserving contributions generated by bulk gravity loops. However, there are other types
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of bulk loops that can violate flavor symmetry such as the hypermultiplet loops in our

model. We must ensure that the gravity loops can be of the right size and sign to correct

slepton masses while hypermultiplet loops are far subdominant, so as not to reintroduce

supersymmetric flavor problem.

The flavor-blind result of the gravity loops to visible sector scalar masses was calculated

in ref. [40, 41, 26],

(m2
vis)

gravity ∼ 1

16π2

Λ4

M2
4

1

(πr)3
. (9.1)

Note that Λ4 represents the supersymmetry breaking vacuum energy as was discusssed in

section 5.4. The result is UV-finite because of the finite separation between the visible and

hidden sectors. We can view this result as the quadratically divergent result one would

obtain in a purely 4D theory, but with the UV-cutoff replaced by a “KK regularization”

1/πr. This contribution is positive in a class of a supersymmetry breaking models with a

dominant hidden D-term [26].

In an analogous fashion, hypermultiplet loops also mediate between the hidden and

visible sectors via the couplings in the action,
∫

d4x

∫

dϕ

∫

d4θ
(

Λ4θ2θ̄2H∗Hδ(ϕ) + cij QiQ
∗
jHH

∗δ(ϕ − π)
)

. (9.2)

Modifying the highly warped estimates of ref. [7], we will simply estimate the hypermul-

tiplet loop effect as the quadratically divergent contribution from the 4D effective low

energy theory, with the resulting UV-cutoff replaced by 1/πr. In the 4D effective theory

H in eq. (9.2) is replaced by its zero mode given by eq. (6.18) (with T = πr). Thus the

hypermultiplet induced visible scalar masses, in general flavor-violating, are estimated to be

m2
vis ∼

1

16π2

4 e−2m0πr

(1 − e−2m0πr)2
m2

0

πr

Λ4

M2
4

. (9.3)

Note that H0 is not canonically normalized, but we have taken its wave function into

account. We expect this to be a conservative estimate.

10. Numerical estimates

The bulk radiative corrections from the supergravity fields given by eq. (9.1) can compen-

sate the negative slepton mass-squared if they are comparable in magnitude. For example,

it is sufficient if roughly

(m2
vis)

gravity & 3 × 10−5 Λ4

M2
4

. (10.1)

To adequately suppress flavor-violating contributions it is sufficient that roughly [28]

(m2
vis)

flavor−violating . 3 × 10−7 Λ4

M2
4

. (10.2)

Saturating eq. (10.1) using eq. (9.1) roughly determines the size of the extra-dimension to be

πr ∼ 6 . (10.3)
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Given the value of πr and using M2
4 = πr, the 5D hypermultiplet mass, m0, can be

adjusted in eq. (9.3) to satisfy the constraint given by eq. (10.2).

As was discussed in section 8, sequestering is guaranteed in a simple way by requiring

the radion to be heavy, ∼ 1015 GeV in order to satisfy eq. (10.2) with our sequestering

factor ∼ Λ2/m2
radion. Given eq. (10.3) and 4D Planck mass M4 = πr ∼ 1018 GeV, the

radion mass in a 5D Planck unit is given by

mradion ∼ 2.4 × 10−3 . (10.4)

The expression of the radion mass is given by eq. (6.23). For fixed m0 and πr, J0 can be

adjusted to get the value given by eq. (10.4).

A possible viable choice of parameters is:

m0 = 7.5 × 10−1 , J0 = 1.9 × 10−3 , Jπ = 1.7 × 10−1 . (10.5)

This choice gives rise to e−2m0πr ∼ 1.2×10−4, which is the key to ensuring the suppression of

hypermultiplet loop contributions to eq. (10.2) relative to eq. (10.1), that is the suppression

of eq. (9.3) relative to eq. (9.1). Note that eσ ∼ 1 for the above choice of parameters (Recall

that σ is determined by eq. (6.12) with the boundary condition, σ(ϕ = 0) = 0).

Acknowledgments

We would like to thank Jonathan Bagger, Dmitry V. Belyaev, Andrew E. Blechman, David

E. Kaplan, Taichiro Kugo, Markus A. Luty, Keisuke Ohashi for discussions and advice.

M.S. especially thanks Gero von Gersdorff for many discussions and technical assistance.

The research of R.S. and M.S. was supported by the National Science Foundation grant

NSF-PHY-0401513 and by the Johns Hopkins Theoretical Interdisciplinary Physics and

Astrophysics Center.

A. Convention

Throughout the paper, we will use A,B, . . . = 0̇, 1̇, 2̇, 3̇, 5̇ for the flat 5D spacetime indices

and M,N, . . . = 0, 1, 2, 3, 5 for the curved 5D indices. Similarly we will use a, b, . . . =

0̇, . . . , 3̇ for the flat 4D spacetime indices and µ, ν, . . . = 0, . . . , 3 for the curved 4D indices.

We mainly follow the convention of ref. [18, 22]. The convention of the metric is

ηAB = diag(1, −1, −1, −1, −1). (A.1)

The gamma matrices are

γµ =

(

0 σµ

σ̄µ 0

)

, γ5̇ =

(

−i 0

0 i

)

, (A.2)

where σµ = (−1, ~σ) and σµ̄ = (−1,−~σ). The gamma ’five’ matrix, Γ5, is defined as Γ5 ≡ iγ5̇

and the projection operaters are defined as

PR =
1

2
(1 + Γ5), PL =

1

2
(1 − Γ5). (A.3)
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The antisymmetrized gamma matrices are

γA1A2···An = γ[A1γA2 · · · γAn] ≡ 1

n!

∑

perms

(−1)pγA1γA2 · · · γAn . (A.4)

The reality constraint of the scalar of the hypermultiplet (similarly for the straight F

terms) is

Ai
α ≡ −Aα∗

i = ǫijAβ
j ρβα. (A.5)

The convention of the ǫ tenser is ǫ12 = ǫ12 = 1. The summation convention is from the

northwest to southeast, i.e. ψ̄χ ≡ ψ̄iχi. The indices are raised or lowered according to the

rules, Ai = ǫijAj and Ai = Ajǫji. We parameterize the scalar fields and F-temrs as

Aα=3,4
i =

(

Aα=3
i=1 = H∗ Aα=3

i=2 = H̄

Aα=4
i=1 = −H̄∗ Aα=4

i=2 = H

)

, Aα=1,2
i =

(

Aα=1
i=1 = C∗ Aα=1

i=2 = C̄

Aα=2
i=1 = −C̄∗ Aα=2

i=2 = C

)

, (A.6)

Fα=3,4
i =

(

FH̄ −F ∗
H

FH F ∗
H̄

)

, Fα=1,2
i =

(

FC̄ −F ∗
C

FC F ∗
C̄

)

. (A.7)

The C denotes the 5D compensator and the gauge fixing of the SU(2) U symmetry

in a bulk theory is done by choosing Aα=1,2
i ∝ δα

i . The reality constraint of the

Symplectic-Majorana spinors is given by

ζ̄α ≡ (ζα)†γ0 = ζαTC, (A.8)

where C is the 5D charge conjugation matrix. We parameterize the Symplectic-Majorana

spinors, satisfying eq. (A.8), as

ζ1 =

(

ζ+
−ζ̄−

)

, ζ2 =

(

ζ−
ζ̄+

)

, ζ̄1 =
(

ζ+ ζ̄−
)

, ζ̄2 =
(

ζ− −ζ̄+
)

. (A.9)

4D Majorana fermions can be obtained out of

ζ = ζ1
R + ζ2

L =

(

ζ+
ζ̄+

)

, ζ ′ = i(ζ1
L + ζ2

R) = i

(

ζ−
−ζ̄−

)

. (A.10)

The ζ and iΓ5ζ ′ become 4D Majorana fermions. The matrix d α
β appearing in the kinetic

terms, eqs. (B.1) ,(B.2) in the appendix B, of the 5D hypermultiplet is given by

d α
β =

(

12 0

0 −12

)

. (A.11)

One notes that 12 corresponds to the physical hypermultipelt while −12 to unphysical

compensator. Another type of matrix, ηαβ , appears in the mass terms of the 5D hyper-

multiplet (see eq. (B.2) in appendix B ). The η matrix must be symmetric, or ηαβ = ηβα.

The diagonal components of η matrix must vanish not to break U(1)R symmetry. The

isovector, e.g. ~Y = (Y 1, Y 2, Y 3) is related to SU(2) tensor, Y ij , by the relation,

Y i
j = Y ikǫkj = i~Y · ~σi

j , (A.12)

and satisfies hermiticity Y ij = (Yij)
∗.
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B. Bulk potential for 4D scalars in superspace notation

We collect only terms contributing to the scalar potential for 4D scalars from eq. (4.7) in

ref. [18] (Note that m→ 2im has been made.)

−Vbulk =

∫

dϕ e

{

−1

2
NR5 −NV ij

5 V 5
ij −

1

2
N00Y

0ijY 0
ij

− 2V 5
ijA

βidα
β ∇5A

j
α + 2Y 0

ijA
i
α(gt0)

ᾱβAj
β

+ ∇5Aᾱ
i ∇5A

i
α − b5∂5N − 1

4

(

N00 −
N0N0

N

)

∂5M∂5M

+

(

1 − A5A
5

M2

)

F̃ ᾱ
i F̃

i
α +Aᾱ

i (gMt0)
2Ai

α + C′(A2 + 2N )

}

.

(B.1)

where

N = M3, b5 = M−1∂5M, A2 = Aᾱ
i A

i
α ≡ Aβ

i d
α
βA

i
α ,

(gMt0)
α
βA

β
i = −M(gt0)

αβAβi = imMηαβAβi ,

(gMt0)
2Ai

α = (gMt0)αγ(gMt0)
γ
βA

βi ,

F̃α
i = Fα

i + imM(d−1)αγ η
γβAβi ,

∇5A
i
α = ∂5A

i
α −A5 (gt0)αβA

βi .

(B.2)

Note that instead of using tij to refer to auxiliary field that belongs to the central charge

vector multiplet, we used Y 0 ij to refer to same field (see ref. [19] for similar discussion).

Throughout the paper, we have used Y (instead of Y 0) since our set up has only one central

charge vector multiplet. The relation of C′ to unprimed C as well as the full details of the

bulk action is given in the same ref. [18].

Since we are interested in working in an orbifolded superconformal gravity theory on

an S1/Z2 and the orbifolding breaks 5D superconformal gauge symmetry down to 4D su-

perconformal gague symmetry, we will re-write the above bulk scalar potential given by

eq. (B.1) in terms of the fields transforming like representations of 4D N = 1 supersym-

metry. We follow the convention given in appendix A.

−Vbulk =

∫

dϕ e

{

− 1

2
M3 R5 − 6M ~Y · ~Y − 3

2
M ∂5M∂5M

+ 4m(HH̄Y +H∗H̄∗Y ∗ + Y 3(|H|2 − |H̄|2))
+ 2D5H

∗D5H + 2D5H̄
∗D5H̄ − 2D5C

∗D5C − 2D5C̄
∗D5C̄

− 2m2A5A
5(|H|2 + |H̄|2)

− 2

(

1 − A5A
5

M2

)

{|FC |2 + |FC̄ |2 − |FH |2 − |FH̄ |2

+ imM(FH̄H + FHH̄ − F ∗
HH̄

∗ − F ∗
H̄H

∗)}

+ C′(A2 + 2M3)

}

.

(B.3)
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The covariant derivatives are given by

D5H = (∂5 − iV 3
5 − imA5)H − iV ∗

5 H̄
∗ ,

D5H̄ = (∂5 − iV 3
5 + imA5)H̄ + iV ∗

5 H
∗ ,

D5C = (∂5 − iV 3
5 )C − iV ∗

5 C̄
∗ ,

D5C̄ = (∂5 − iV 3
5 )C̄ + iV ∗

5 C
∗ .

(B.4)

The ~Y · ~Y denotes the inner product of isovectors ~Y = (Y 1, Y 2, Y 3) (same for ~VM ). It is

convenient to complexify parity even components Y 1,2, V 1,2
5 as Y ≡ Y 1+iY 2, V5 ≡ V 1

5 +iV 2
5 .

The matrix elements, η34 = η43 = η, appearing in eq. (B.2) was absorbed into m, i.e.

mη → m. Using the choice for the matrix d α
β given in eq. (A.11) the A2 is given by

A2 ≡ Aβ
i d

α
βA

i
α = 2(−|C|2 − |C̄|2 + |H|2 + |H̄ |2) . (B.5)

One notes the equation of motion of C′ gives rise to one constraint, A2 = −2M3.

On the 5D warped spacetime metric,

ds2 = e2σηµνdx
µdxν − r2dϕ2 , (B.6)

the “e” and the 5D curvature term R5 in eq. (B.3) are given by (see refs. [31, 32] for related

discussions)

e = e4σ r , R5 = 4 (2 ∂2
5̇
σ + 5 (∂5̇σ)2) . (B.7)

The warp factor-dependence in a basis with the unit warp factor is easily determined by

observing that under the Weyl transformation,

eaµ → e−σeaµ , (B.8)

the fields transform like [31]

H → e3/2 σ(H, eσ/2ζH , e
σFH) ≡ e3/2 σH ,

V → eσ(Aµ, 2e
σ/2Ω+, e

σDV) ≡ eσV , DV = 2Y 3 − ∂5̇σ − D̂5̇M ,

−2iΣ →
(

e5̇5M − iA5, e
σ/2(−4i ψ5−M + 4e5̇5Γ5Ω−), eσ(−2i(V 1

5 + iV 2
5 )M

− 2e5̇5(Y
1 + iY 2) + 2iψ5−(1 + Γ5)Ω−)

)

≡ −2iΣ .

(B.9)

The effective potential from the bulk action given by eq. (B.3) can be economically written

in compact flat (global) 4D superspace notation,

−Vbulk =−
∫

dϕ

{
∫

d4θe2σ 1

2
(T+T ∗)

(

2CC∗+2C̄C̄∗−H∗e
2√
3
mṼ

H−H̄e−
2√
3
mṼ

H̄∗+
1

2
Ṽ3

)

+

∫

d2θ e3σ

(

H

(

1

2

↔
∂5 + 2imΣ

)

H̄ − C
↔
∂5 C̄ +

i

2
Σ W̃αW̃α + h.c.

)

+ e4σr
{

−6M |Y |2 + V 3
5 V

3 5A2

+(2mHH̄Y +iV 3
5 (H∗∇5H+H̄∗∇5H̄−2C∗∂5C−2C̄∗∂5C̄)+h.c.)

}

+ e4σr C′(A2 + 2M3)

}

,

(B.10)

– 28 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
4

in terms of the “fake” flat superspace multiplets,

Ṽ =
1

2
θ2θ̄2(

√
3 e2σD) , W̃α = θ eσ/2

√
3D ,

Ṽ = M − θ2θ̄2∂5̇(e
2σ D) , eσD ≡ eσ 2Y 3 − ∂5̇(e

σM) ,

T =
−2i

M
Σ = T + θ2eσFT , T ≡ r − i

M
A5 , FT ≡ −2i V5 ,

C=C+θ2eσFC , C̄= C̄+θ2eσFC̄ , H=H+θ2eσFH , H̄=H̄+θ2eσFH̄ ,

A2 = 2(−|C|2 − |C̄|2 + 1/2 |H|2 + 1/2 |H̄ |2) .
(B.11)

The F terms are defined in terms of 5D F terms and other 5D fields as

FH =
1

r

{

−∂5H̄
∗ − 3

2
∂5σ H̄

∗ + i

(

r +
i

M
A5

)

FH + i(V 1
5 + iV 2

5 )H

}

,

FH̄ =
1

r

{

∂5H
∗ +

3

2
∂5σH

∗ + i

(

r +
i

M
A5

)

FH̄ + i(V 1
5 + iV 2

5 )H̄

}

,

FC =
1

r

{

−∂5C̄
∗ − 3

2
∂5 σC̄

∗ + i

(

r +
i

M
A5

)

FC + i(V 1
5 + iV 2

5 )C

}

,

FC̄ =
1

r

{

∂5C
∗ +

3

2
∂5σ C

∗ + i

(

r +
i

M
A5

)

FC̄ + i(V 1
5 + iV 2

5 )C̄

}

.

(B.12)

The covariant derivatives are defined as

∇5H = ∂5H − imA5H , ∇5H̄ = ∂5H̄ + imA5H̄ . (B.13)

Note that the (H, H̄) → 1√
2
(H, H̄) was made (same for 5D F terms of H and H̄ ),

compared to original component bulk scalar potential of eqs. (B.1) and (B.3), so that

physical hypermultiplet has a canonical normalization.

By performing superspace integration of the bulk potential given by eq. (B.10) with

the expressions given by eq. (B.11) and (B.12), one can easily reproduce all the component

terms in eq. (B.3). Note that the bulk potential given by eq. (B.10) has the explicit

dependence of dilaton M and C̄ which means that we have not yet gauge-fixed the scale

invariance and SU(2) U symmetry.
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